

Nutrient Depletions, Medications, and the **Immune** System

Lindsey Elmore, PharmD, BCPS, CYT-250

Partners

 Financial support was provided for this course through an educational grant from KBMO Diagnostics and Your Financial Pharmacist.

Disclosures

 Paid education consultant for Young Living Essential Oils, a company that also distributes dietary supplements.

Objectives

- By the end of this presentation, you will be able to:
 - Describe the impact of nutrient depletions and medication-related nutrient depletions on immune function.
 - Recommend proper doses to mitigate the risk of side effects related to drug induced nutrient depletions.
 - Discuss micronutrient testing
 - Define a nutrient and how each nutrient interacts with the immune system
 - Describe common nutrient depletions caused by medications

What are nutrients?

- Nutrients are substances that provides nourishment essential for growth and the maintenance of life
- There are six major nutrients:
 - Carbohydrates
 - Fats
 - Proteins
 - Vitamins
 - Minerals
 - Water

Carbohydrates and the Immune System

- In humans, healthy carb intake stabilizes blood sugar, decreases stress response, and enhances immunity
- Pathogens pick up pieces of carb from the host, bind carb receptors and mimic endogenous carbs
- Low carb diets increase stress on the immune system because of lack of fiber and resultant changes in microbiome

Fats and the Immune System

 High fat diets increase the risk of Listeria infection by increasing the number of goblet cells, a known binding site for the pathogen, and induces profound changes to the microbiota and promotes a pro-inflammatory gene expression

Proteins and the Immune System

 Amino acids are used as fuel by the immune system either directly, or following their conversion to other amino acids (e.g., glutamine) or to glucose

Water and the Immune System

- Water carries oxygen to blood cells
- Removes toxins from the body
- · Cleans the mouth and eyes
- · Helps digest food
- Critical in the production of melatonin, and sleep is critical to immune function

Diuretics and the Immune System

 Dehydration caused by diuretic use is an excellent example of the complexity of today's discussion

Vitamins and the Immune System

- Vitamin C
- Vitamin D
- Vitamin B12/B9
- Beta Carotene

Vitamin C and the Immune System

Vitamin C

- Electron donor, potent antioxidant, cofactor for gene regulation
- Contributes to immune defense by supporting various cellular functions of both the innate and adaptive immune system.
 - Supports epithelial barrier function against pathogens
 - Promotes oxidant scavenging activity of the skin, thereby potentially protecting against environmental oxidative stress
 - Accumulates in phagocytic cells, and can enhance chemotaxis, phagocytosis, generation of reactive oxygen species, and ultimately microbial killing
 - Clears spent neutrophils from sites of infection by macrophages, decreasing necrosis and tissue damage
 - Enhances differentiation and proliferation of B- and T-cells

Vitamin C and the Immune System

- Deficiency results in impaired immunity and higher susceptibility to infections.
- Infections significantly impact vitamin C levels due to enhanced inflammation and metabolic requirements
- Supplementation prevents and treats respiratory and systemic infections.
 - Prevention of infection requires dietary vitamin C intakes of 100– 200 mg/day
 - Treatment requires higher doses of >1 gram

Vitamin D

- Vitamin D deficiency is very common in people with autoimmune disorders.
- Vitamin D has numerous effects on cells within the immune system.
 - Inhibits monocyte production of inflammatory cytokines such as IL-1, IL-6, IL-8, IL-12 and TNFα.

Vitamin D and the Immune System

- Vitamin D has numerous effects on cells within the immune system.
 - Inhibits B cell proliferation, blocks B cell differentiation and immunoglobulin secretion.
 - Suppresses T cell proliferation and results in a shift from a Th1 to a Th2 phenotype.
 - Affects T cell maturation with a skewing away from the inflammatory Th17
 phenotype and facilitates the induction of T regulatory cells.
 - These effects result in decreased production of inflammatory cytokines (IL-17, IL-21) with increased production of anti-inflammatory cytokines such as IL-10.
 - Inhibits dendritic cell differentiation and maturation with preservation of an immature phenotype with decreased expression of MHC class II molecules, costimulatory molecules and IL-12.

Vitamin D and the Immune System

$1,25(OH)_2$ -Vitamin D₃

Vitamin A and the Immune System

- Vitamin A is an anti-inflammation vitamin because of its critical role in enhancing immune function.
 - Vitamin A exists in the form of retinol, retinal, and retinoic acid (RA), among which RA shows the most biological activity.
- Vitamin A affects cell differentiation, maturity, and immunological function in innate immunity
- RA induces T-cell migration, control T-reg cells, and manages T-cell homeostasis, promotes Th17 cell differentiation
- RA acts directly on B-cells and affects the synthesis and secretion of IgA

Vitamin A and the Immune System

Vitamin B12/B9 and the Immune System

- Immunomodulator for cellular immunity.
- Inadequate levels of B9/B12 drastically alter immune responses by:
 - Affecting the production of nucleic acid
 - Protein synthesis
 - Inhibiting the activity of immune cells
 - Interfering with metabolic processes, including methylation and serine, glycine, and purine cycles.

Vitamin B12/B9 and the Immune System

- B12 plays an important role in white blood cell production, and white blood cells are essential for proper immune system functioning
- Lack of B12 lowers immunity, and some autoimmune system disorders can increase deficiency.
- Pernicious anemia attacks cells in the gut that product intrinsic factor, reducing absorption of B12.

Minerals and the Immune System

- Zinc
- Magnesium
- Iron
- Calcium

Zinc and the Immune System

- Zinc affects multiple aspects of the immune system.
 - Crucial for normal development and function of cells mediating innate immunity, neutrophils, and NK cells.
 - Macrophage phagocytosis, intracellular killing, and cytokine production all are affected by zinc deficiency.
 - Deficiency adversely affects the growth and function of T and B cells.
 - Functions as an anti-oxidant and stabilize membranes
 - Has a role in the prevention of free radical-induced injury during inflammatory processes.

Magnesium and the Immune System

- Mg deficiency increases proinflammatory cytokines (IL-6, TNF- α)
- Increased plasma substance P during the first week of Mg deficiency.
 - SP increases IL-2, IL-4, IL-5, IL-10, IL-12, IL-13 and IFN-y
 - Maximal at either 5 days (IL-4 and IL-5) or 7 days (IL-2, IL-10 and INF-γ) after Mg deficiency.
 - SP might play a key role in regulating T lymphocyte cytokine production during Mg deficiency
 - Especially cytokines regulating mast cells and the immunopathological response.
- Mg deficiencies may contribute to atherosclerosis by modification of lipoprotein metabolism, and by the release of growth factors that induce cell migration and proliferation

Iron and the Immune System

- Iron homoeostasis plays a vital role in controlling iron fluxes such that bacteria are prevented from utilizing iron for growth; secondly, cells of the innate immune system, monocytes, macrophages, microglia and lymphocytes, are able to combat bacterial insults by carefully controlling their iron fluxes, which are mediated by hepcidin and ferroportin.
- Lymphocytes play an important role in adaptive immunity.
- Toll-like receptors, NF-kB, hypoxia factor-1, heme oxygenase, will orchestrate the inflammatory response by mobilizing cytokines, neurotrophic factors, chemokines, and reactive oxygen and nitrogen species.

Calcium and the Immune System

- Calcium acts as a second messenger in many cell types, including lymphocytes.
 - Resting lymphocytes maintain a low concentration of Ca.
 - Engagement of antigen receptors induces Ca influx from the extracellular space, activatin lymphocytes.
- Store-operated channels allow entry of Ca.
 - Two components of SOC channels, CRACM1 (the pore-forming subunit) and STIM1 (the sensor of stored calcium) present targets for medications and gene therapy.

Of Special Note: Coenzyme-Q-10

- CoQ10 is a naturally occurring, fat-soluble, vitamin-like compound obtained from the diet and, to a lesser extent, from endogenous synthesis.
- CoQ10 functions in the electron transport chain in the mitochondria and, thus, plays an important role in energy metabolism.
- CoQ10 improves energy, augments the immune system, and acts as an antioxidant.
- CoQ10 plays a significant role in boosting the immune system and physical performance, as tissues and cells involved with immune function are highly energy-dependent and therefore require an adequate supply of CoQ10 for optimal function.

Medications that Increase Risk of Nutrient Depletions

Medications Most Likely to Impact Nutrition Status

- Proton Pump Inhibitors
- Aspirin
- Diuretics
- ACE Inhibitors
- Calcium Channel Blockers
- Statins
- Metformin
- Thiazolidinediones

- Oral Corticosteroids
- Inhaled Beta2-Agonists
- Inhaled Corticosteroids
- Antidepressants
- Oral Contraceptives

Proton Pump **Inhibitors**

 MOI: Reduces gastric acid production, limiting the absorption of micronutrients that depends on low pH for uptake

Am. J. Gastroenterol. 2009;104(Suppl. S2):S5-S9. doi: 10.1038/ajg.2009.45.

Nutrition. 2013;29:605-610. doi: 10.1016/j.nut.2012.11.011.

Eur. J. Gastroenterol. Hepatol. 2001;13:233-237. doi: 10.1097/00042737-200103000-00003.

Gastroenterology, 1999:116:813-822, doi: 10.1016/S0016-5085(99)70064-8.

Proton Pump Inhibitors

- Vitamin B12
 - Gastric acid is needed to remove B12 from proteins in food (but not for absorption from fortified foods and supplements)
 - Decreases protein-bound B12 absorption
 - American Gastroenterology Association recommends routine B12 screening or routine supplementation in patients
 - Increased risk of deficiency is seen in people with atrophic gastritis and/or H. pylori infection, and slow metabolizers of omeprazole

Proton Pump Inhibitors

Vitamin C

- Vit C is highly concentrated in gastric juice where it is activated to ascorbic acid which helps to kill carcinogenic nitrates from saliva.
- Treatment with 40 mg/day omeprazole for 4 weeks in patients without H. pylori infection reduced the proportion of ascorbic acid to total vitamin C in gastric juice
- May also reduce serum vitamin C, especially in patients with *H. pylori* infection
- Chicken and Egg: Observational study detected 30% less vitamin C in the plasma in patients with H. pylori

Iron

- Non-heme iron in plant foods must be reduced prior to absorption in the small intestine
- Omeprazole induced achlorhydria may impair the response to iron.

Proton Pump Inhibitors

- Package Insert Warnings
 - Bone Fracture
 - Calcium absorption in the gut is influenced by gastric pH
 - PPI use increases risk of fracture and necessitate anti-osteoporosis therapy
 - Many discrepancies exist: food vs supplement, fasted vs fed, age
 - Highest risk may be in people with existing risks according to N Osteo Found
 - AGA does not recommend routine testing of BMD in pts on chronic PPI

Proton Pump Inhibitors

- Package Insert Warnings
 - Hypomagnesemia
 - Case reports are widely documented
 - Magnesium supplementation alone is not always successful in reversing hypomagnesemia
 - No well-designed studies give mechanistic description of why this may occur

Aspirin

- MOA: blocks prostaglandin synthesis.
- Non-selective for COX-1 and COX-2 enzymes.
- Platelet aggregation inhibition for about 7-10 days.
- Well established that aspirin causes mucosal damage, gastric ulcers, and increase the risk of GI bleed

Figure 1. Aspirin mechanism of action -- acetylation of cyclooxygenase (COX). Aspirin acetylates a serine (Ser) residue of COX and irreversibly inactivates COX-1. In the case of COX-2, aspirin "turns off" its ability to generate prostaglandins, but "switches on" its capacity to produce novel protective lipid mediators.

Aspirin and Vitamin C Depletions

- Studies dating back to the 1970 conclude that high aspirin doses deplete vitamin C
- Ascorbic acid levels are abnormally low in patients with Rheumatoid arthritis
- Aspirin completely inhibits the uptake of ascorbic acid into leukocytes following a 600 mg dose

Lancet. 1971;1:937–938. doi: 10.1016/S0140-6736(71)91441-3. J. Clin. Pharmacol. 1975;15:36–45. doi: 10.1002/j.1552-4604.1975.tb01426.x.

Aspirin and Vitamin C Depletions

- 2400 mg reduces vitamin C concentrations in the urine, plastic, and gastric mucosa
- Decreases in gastric mucosa may be due to antioxidant activity of vitamin C aiming to repair damage from aspirin
- Though somewhat counterintuitive, patients suffering from gastric mucosal injury due to aspirin may benefit from vitamin C supplementation
- Given the high dose of aspirin in publication, unclear how this relates to prophylactic dosing

Aspirin and Iron

- Because of the impact of aspirin on the gut, and the increased risk of bleeding, iron deficiency anemia may result.
- A retrospective study of elderly patients (mean age 82) found that prevalence of anemia in aspirin users was double that of the control group (24% vs 11%, p-val not stated)
- A controlled trial of patients >70 years were randomized to take 100 mg aspirin/day or placebo
 - Aspirin treated patients had significant reductions in hemoglobin levels, though still WNL
 - But, Hb is typically the last marker of anemic measures to change, and measures of iron stores may be more effective than Hb

Aspirin and Iron

- To make things more complicated, ferritin is related to inflammation
- Studies that conclude that aspirin therapy can reduce ferritin have failed to determine whether this is a measure of the desired anti-inflammatory action of aspirin or a predictor of the pathology of anemia

ACE Inhibitors

MOA: ACE inhibitors produce vasodilation by inhibiting the formation of angiotensin II.

ACE Inhibitors and Zinc

- Long term ACE treatment, especially with captopril, can cause hypogeusia.
 - Loss of taste is a symptom of Zn deficiency, and patients on long-term, high-dose captopril may have higher taste and recognition thresholds, lower plasma zinc levels, and high urinary zinc compared to controls.
 - Lower doses lower zinc status in people with kidney disease and heart failure. Other at-risk groups include older age, malabsorption, and diarrhea
- Other ACE-I are varied
 - Captopril=benazepril>enalapril perhaps because the thiol-radical group on captopril binds Zn
- Major limitation: zinc plasma levels ≠ tissue levels

Heart Fail. Rev. 2006;11:19–24. doi: 10.1007/s10741-006-9189-1.
J. Clin. Hypertens. 1987;3:405–408. J. Clin. Hypertens. 1987;3:405–408.
J. Trace Elem. Med. Biol. 2007;21(Suppl. S1):53–55. doi: 10.1016/j.jtemb.2007.09.018.
Nephron. 1983;34:195–197. doi: 10.1159/000183009.
Metabolism. 1990;39:665–667. doi: 10.1016/0026-0495(90)90098-W.
J. Am. Coll. Nutr. 1998;17:75–78. doi: 10.1080/07315724.1998.10720459.

ACE Inhibitors and Potassium

 Well know that ACE-I increase risk of hyperkalemia, especially in patients with older age, renal disease, diabetes, heart failure, concomitant use of potassium-sparing diuretics, potassium supplements or consumption of potassium rich diets

Statins

 MOA: competitively block the active site of the first and key rate-limiting enzyme in the mevalonate pathway, HMG-CoA reductase

Statins and CoQ10

- CoQ10 is an intermediate in the mevalonate pathway, which is inhibited by statins.
- A number of studies report that statins lower CoQ10, especially the elderly
- Changes may be dose dependent, and supplementation effectively increases blood CoQ10
- In addition to harm to the energetics of the immune system,
 CoQ10 depletion may also lead to myopathies

Metformin

 MOA: decreases hepatic glucose production, decreases intestinal absorption of glucose, and improves insulin sensitivity by increasing peripheral glucose uptake and utilization.

Metformin and Vitamin B12 Depletion

- Metformin may decrease vitamin B12 in a duration- and dose-dependent manner through impaired intestinal absorption.
- Individuals already at risk of low B12 status, including the elderly and vegetarians, may be at greater risk during drug therapy.
- Current evidence is sufficient to recommend periodic assessment of vitamin B12 in patients taking metformin

Nutrient Tests

- Increased access to at home testing for wide array of hormone (including cortisol), nutrients, infections, inflammatory toxins, inflammatory mediators, food sensitivities
- Many companies exist including SpectraCell, Everywell, NutraEval
- Easy to incorporate into telepharmacist practice

Repleting Lost Nutrients

- No great data on how to replete, when to test, or how much to dose and how often for most vitamins, minerals
- Sometimes, in the case of magnesium, vitamin C, and B12, supplementation is generally well tolerated and aggressive doses have been documented with minimal side effects
- However GI disturbances may occur include constipation with calcium and iron, and diarrhea with zinc
- Additional caution is warranted with fat soluble vitamins, in patients with autoimmune disorders, underlying conditions, and with fat soluble vitamins that may accumulate

Reference Levels

Nutrient	Serum Reference Levels
Vitamin A	30 – 95 μg/dL
Vitamin B12	200 - 800 pg/mL
Vitamin C (plasma)	0.2 - 2.0 mg/dL
1,25-Dihydroxy-vitamin D	24 - 65 pg/mL
Vitamin E	5 – 20 μg/mL
Iron	25 - 170 μg/dL
Magnesium	1.5 - 2.4 mEq/L Critical value: <1.0 mEq/L and >4.7 mEq/L
Calcium	0-6 months: 8.9-11.0 mg/dL 7 mon to adults: 8.5-10.6 mg/dL 8.5 - 10.3 mg/dL
Zinc (plasma)	60 - 130 μg/dL

NIH ODS https://ods.od.nih.gov/HealthInformation/Dietary_Reference_Intakes.aspx

Recommended Daily Intake

Nutrient	RDA
Vitamin A	Adult Males <70 years: 900 mcg/day Adult Females <70 years: 700 mcg/day
Vitamin B12	2.4 mcg/day
Vitamin C	Adult Males: 90 mg/day Adult Females: 75 mg/day
Vitamin D	15 mcg/day
Vitamin E	15 mg/day
Iron	Adult Males: 8 mg/day Adult Females: 18 mg/day until menopause
Magnesium	Adult Males: 400-420 mg/day Adult Females: 310-320 mg/day
Calcium	Adult Males: 1000 mg/day Adult Females: 1000-1200 mg/day
Zinc	Adult Males: 11 mg/day Adult Females: 8 mg/day

NIH ODS

https://ods.od.nih.gov/HealthInformation/ Dietary_Reference_Intakes.aspx

Repleting Lost Nutrients

- Ideally clinicians recommend patients get adequate nutrition from their diet
- A full spectrum multiple vitamin/mineral supplement may be sufficient
 - Adults who take a daily MVM are less likely than non-users to be deficient in any one nutrients
 - Helps fulfill micronutrient requirements and improve nutritional status even in healthy adults
- Physicians have been historically hesitant to recommend a MVM despite little risk of mortality or morbidity

Before We Go

- Vitamin D and Sars-CoV-2
 - Retrospective case-control study of 216 COVID patients and 197 population-based controls.
 - 19 were on vitamin D supplements and were analyzed separately.
 - In COVID patients, mean 25-OH-D levels were 13.8±7.2 ng/ml, compared to 20.9±7.4 ng/ml in controls (p<0.0001)
 - Vitamin D deficiency was found in 82.2% of COVID-19 cases and 47.2% of population-based controls (p<0.0001).
 - Vitamin D-deficient COVID patients had
 - More hypertension and CV diseases
 - Raised serum ferritin and troponin levels
 - Longer length of hospital stay than those with 25OHD levels ≥20 ng/ml.

Vitamin D and Sars-CoV-2

- Mean levels of vitamin D (average 22.44 ng/mL,) in 20 Europeans Countries
- Strongly associated with the number of cases/1M (mean 295.95 p=0.004
- Mortality/1M (mean 5.96, p < 0.00001).

Vitamin D and Sars-CoV-2

Vitamin D and Sars-CoV-2

- A total of 489 patients had a vitamin D level measured in the year before COVID-19 testing.
- Vit D status was categorized as likely deficient for 124 participants (25%), likely sufficient for 287 (59%), and uncertain for 78 (16%).
- 71 participants (15%) tested positive for COVID-19.
 - Testing positive for COVID-19 was associated with:
 - increasing age up to age 50 years (relative risk, 1.06; 95% CI, 1.01-1.09; P = .02)
 - non-White race (relative risk, 2.54; 95% CI, 1.26-5.12; P = .009),
 - deficient vitamin D status (relative risk, 1.77; 95% CI, 1.12-2.81; P = .02)
- COVID-19 rates in the deficient group were 21.6% (95% CI, 14.0%-29.2%) vs 12.2%(95% CI, 8.9%-15.4%) in the sufficient group.

Lindsey Elmore, PharmD, BCPS, CYT-250

@lindseyelmore on Instagram and Facebook

@drlindseyelmore on Pinterest

Free Yoga for Pharmacists available at www.lindseyelmore.com/pharmacists

