

The Immune System & The Gut Immune Patient Cases

Melody L. Hartzler, PharmD, BCACP, BC-ADM CEO& Pharmacist Educator, PharmToTable, LLC Clinical Pharmacist, Western Medicine Family Physicians

Associate Professor of Pharmacy Practice, Cedarville University School of Pharmacy

Partners

• Financial support was provided for this course through an educational grant from KBMO Diagnostics and Your Financial Pharmacist.

Disclosures

• Dr. Hartzler is the owner of PharmtoTable, LLC and is on the speaker's bureau for Salix Pharmaceuticals.

Objectives

- Discuss the 5 R Approach for addressing gastrointestinal imbalances
- Apply knowledge of immune interventions to patient cases.

Understanding the Root Cause

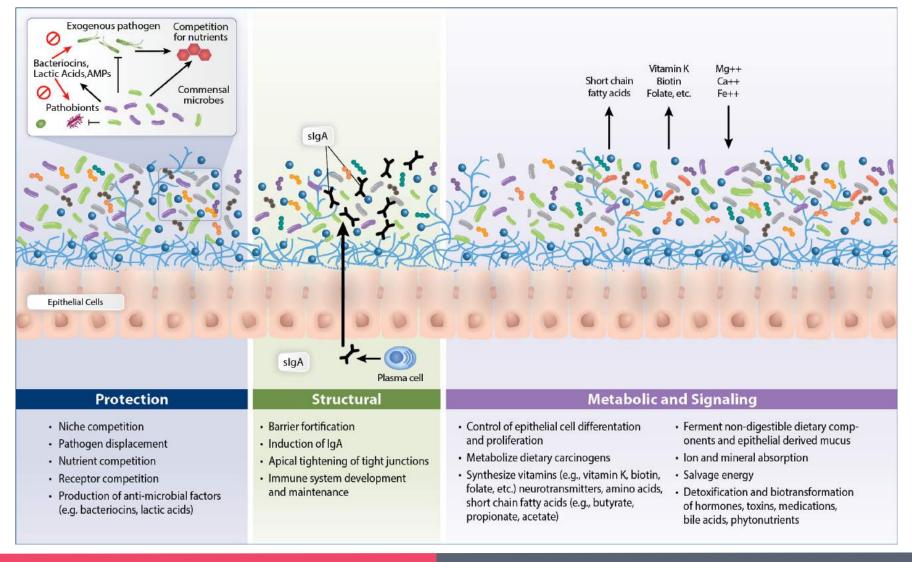
- GI system is complex
- Significant Interrelationships between
 - Digestion/Absorption
 - Intestinal Permeability
 - Gastrointestinal Flora
 - Immune Regulation & Inflammation
 - Nervous System

Basic Functions of the GI System

- Digestion
 - Enzymes (pancreas & Small intestine microvilli), HCL, bile salts, transport proteins
- Phase I and Phase II start in intestinal mucosa
- Communication to endocrine and immune systems

Basic Functions of the GI System

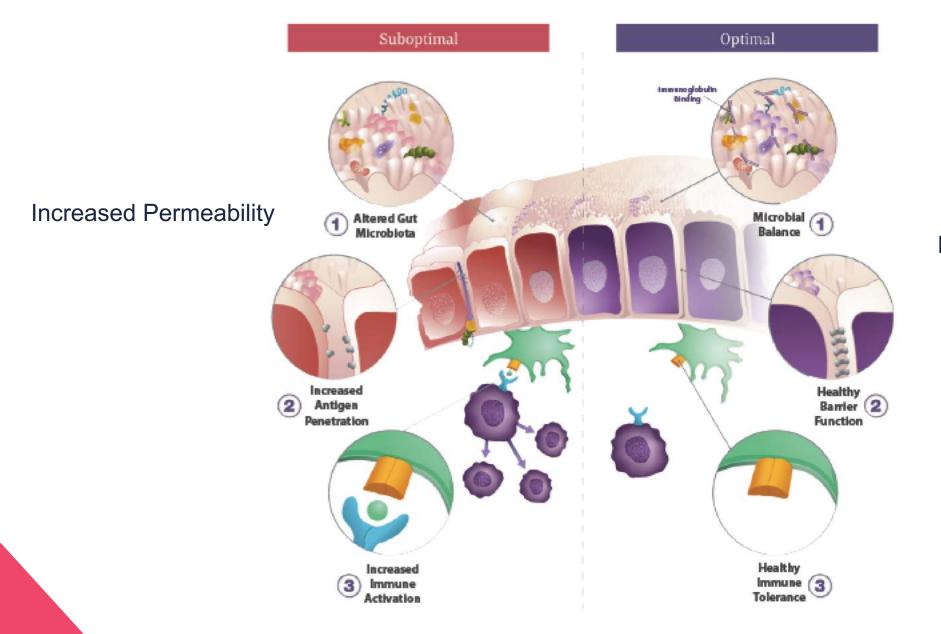
- Immune Function
 - Gut Associated Lymphoid Tissue (GALT)
 - B cells, T Cells, and phagocytes
 - As much as 70% of the total body reserves of lymphoid tissue
 - Developing oral tolerance is an important mechanism of immune regulation



Basic Functions of the GI System

- Antigens that survive the digestive process are examined by the GALT tissue
 - Generally non-beneficial will be processed and inhibit the development of allergy by increasing IgA and cytokines at the mucosal and luminal level
 - Secretory IgA binds to and neutralizes microbes and other antigens before they cross the mucosal barrier
 - Chronic intestinal infection or inflammation can leaded to more immunogenic responses to common antigens

Commensal Gut Microbiome



"Leaky Gut"

- Translocation
 - The process of a large molecule moving through a biologic barrier
 - May result in allergy, autoimmunity, or high levels of inflammation.
 - Can overwhelm the liver "detox" mechanisms

Healthy Tight Junctions

Dysbiosis & & Immune Activation

- Lipopolysaccharide (LPS)
 - Highly studied component of gram-negative bacteria
 - Stimulates immunological responses
 - Stimulates production of numerous inflammatory mediators
 - Leads to intestinal permeability & chronic inflammation
 - Linked to depression
- Dysbiosis
 - Increases intestinal permeability (IP)

Management of Dysbiosis

Step 1: Identify & correct underlying causes

Test

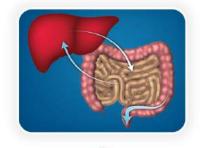
Step 2: Manage & treat

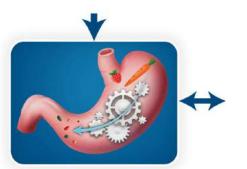
• 4 R/5R Approach

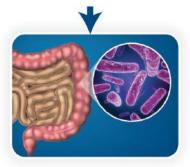
Step 3: Reduce likelihood of relapse

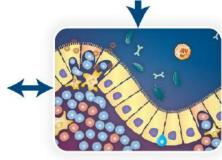
Address Motility

REMOVE (Important First Step in 4R Model)


Promote Elimination and Detoxification


Remove Allergens and Toxins


- · Elimination diet
- · Detoxification protocol


Remove Harmful Organisms

- · Stool testing for pathogens
- · Eliminate pathogens

REPLACE

Promote Digestion and Absorption

- Supplement or stimulate
 - Stomach acid
 - Digestive enzymes
 - Bile for fat absorption
 - Easy to absorb nutrients

RE-ESTABLISH

(Re-inoculate)

Ecosystem for Microbiome

- · Microbiome-friendly diet
- · Avoiding certain drugs/antibiotics
- Probiotics
- Prebiotics

REPAIR

Barrier Function/ Immune Interface

- · Reduce gut inflammation
- · Provide nutrients for GI cells
- · Improve tight junctions
- · Increase signals for immune modulation

SUPPORTING NEUROENDOCRINE (GUT/BRAIN) FUNCTION

- · Modulate the effects of HPA axis/stress
- · Control neurotransmitter synthesis and function
- · Manage satiety signals from gut
- Coordinate signals from microbiome, immune system, bowel transit to and from the CNS

for the Management of Gastrointestinal Disease. The Standard Road Map Series. Pointe Institute 2016.

Reprinted with permission: Page 22. Guilliams, T. Functional Strategies

4R/5R Framework

Remove

Food Allergies

Pathogens

Stress

SIBO treatment

- Good Eradication Rates (50%)/Non-absorbable Antibiotic
 - Rifaximin 1200–1600 mg daily.
 - Neomycin 500 mg BID X 10 days (added for methanogens)
- Systemic Antibiotics (Eradication 44-100%)
 - Ciprofloxacin
 - Metronidazole 750 mg daily (in divided doses, usually 250 mg TID)
 - Sometimes given in combination with Rifaxamin to address methanogens

Herbal Treatment

- Limited Evidence
 - Multi-center study (n=140) did find herbal therapy to be equivalent to Rifaximin
 - Preparations used in next slide.
 - •2 herbal combination formulas together, at a dose of 2 caps 2 x day x 4 weeks, for each formula.
 - Biotics FC Cidal with Biotics Dysbiocide, or
 - Metagenics Candibactin-AR with Metagenics Candibactin-BR

Herbal Preparations for the Treatment of Small Intestine Bacterial Overgrowth

FC Cidal	Dysbiocide	Candibactin-AR	Candibactin-BR
Proprietary blend -	Proprietary Blend 950 mg per	One Capsule contains:	Two Capsules contain:
500 mg: 1 capsule	2 capsules		
Tinospora cordifolia	Dill seed	Red Thyme oil (thymus vulgaris, providing	Coptis root and rhizome extract (coptis chinensis, containing
(stem)		30%-50% thymol) 0.2 mL	berberine) 30 mg
Equisetum arvense	Stemona Sessilifolia powder	Oregano Oil (origanum vulgare, providing	Indian Barberry root extract (berberis aristata, containing
(stem)	and extract	55% to 75% carvacrol) 0.1 mL	berberine) 70 mg
Pau D'Arco (inner	Artemisia Absinthium shoots	Sage leaf 5.5:1 extract (salvia officinalis)	Berberine Sulfate 400 mg • Proprietary 4:1 Extract 300 mg
bark)	and leaves extract,	75 mg	Coptis root and rhizome (coptis chinensis)
Thymus vulgaris	Pulsatilla Chinensis rhizome	Lemon Balm leaf 5:1 extract (melissa	Chinese Skullcap root (scutellaria baicalensis)
(aerial part)	powder and extract	officinalis) 50 mg	
Artemisia	Brucea Javanica powder and		Philodendron bark (phellodendron chinense)
dracunculus (leaf)	extract		
Sida cordifolia (aerial	Picrasma Excelsa bark extract		Ginger rhizome (zingiber officinale)
part)			
Olea europaea (leaf)	Acacia Catechu stem extract		Chinese Licorice root (glycyrrhiza uralensis)
	Hedyotis Diffusa powder and		Chinese Rhubarb root and rhizome (rheum officinale)
	extract		
	Yarrow leaf and flower extract		Chinese Rhubarb root and rhizome (rheum officinale).
	(achillea millefolium).		

Other Herbal Treatment

- Allicin from Garlic (the highest potency formula I know of is Allimed)
- Oregano
- Berberine- found in Goldenseal, Oregon Grape, Barberry, Coptis, Phellodendron
- Neem
- Cinnamon
- Blends like Biocidin®

Low-FODMAP

- FODMAP stands for fermentable oligosaccharides, disaccharides, monosaccharides, and polyols, all of which are particular types of carbohydrate.
- Excess fructose: honey, apple, mango, pear, watermelon, high-fructose corn syrup, agave syrup, dried fruit, fruit juice
- **Fructans**: artichokes (globe), artichokes (Jerusalem), asparagus, beetroot, broccoli, Brussels sprouts, cabbage, eggplant, fennel, okra, chicory, dandelion leaves, garlic (in large amounts), leek, onion (brown, white, Spanish, onion powder), radicchio, lettuce, spring onion (white part), wheat, rye, pistachio, inulin, fructo-oligosaccharides.
- Lactose: milk, ice cream, custard, dairy desserts, condensed and evaporated milk, milk powder, yogurt, soft unripened cheeses (such as ricotta, cottage, cream, and mascarpone cheese).
- Galactans: legumes (such as baked beans, kidney beans, soybeans, lentils, chickpeas).
- **Polyols:** apple, apricot, avocado, blackberry, cherry, longan, lychee, nectarine, pear, plum, prune, mushroom, sorbitol, mannitol, xylitol, maltitol, and isomalt.

Elemental Diet

- This approach seeks to starve the bacteria, but feeds the person, by replacing meals for 2 weeks with an Elemental Formula.
- Elemental formula: powdered nutrients in a pre-digested, easily absorbed form.
- The formula studied for SIBO is Vivonex Plus.
- Contains protein as amino acids, carbohydrate as maltodextrin, fat as various oils, and vitamins & minerals.
- 80-84% success in eradicating of SIBO.

4R/5R Framework

Replace

Digestive Enzymes

Betaine HCI Pepsin

Bile

4R/5R Framework

Diet

Reestablish Probiotic

Prebiotics

Probiotics

- Consume probiotic rich foods
 - Kefir
 - Raw Sauerkraut
 - Kimchi
- Probiotic Supplement Success
 - It must contain strains that are normally found in the human gut.
 - It must be able to survive the acidic environment of the stomach and capable of colonizing (i.e., establishing permanent residence in) the G.I. tract.
 - It must be supplemented in concentrations higher than what is found in the gut.
- In clinical trials, probiotics appear to be useful for the treatment of various clinical conditions such as food allergy, atopic dermatitis, and allergic rhinitis.
- Some studies even show improvement in depression symptoms with probiotics

Probiotic Supplements

- Soil-Based Organisms
 - Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria. (Product example Prescript Assist)
 - May be helpful/better tolerated for patients with SIBO since overgrowth can sometimes be from common bacteria such as lactobacillus species
- Saccharomyces boulardii
 - Good for preventing and treating diarrhea
 - Recurrent C-Diff (with other antibiotics)
 - IBD
- VSL #3 (3.6 trillion bacteria per day)
 - Good evidence in treatment of Ulcerative Colitis (Am J Gastroenterol. 2005 Jul;100(7):1539-46)
 - Remission achieved in 53% of patients.
 - Response in 24%

Prebiotics

- Prebiotics are food ingredients that cannot by digested by humans but can be digested by the bacteria in our gut
- Most prebiotics are FODMAPs
 - Start low and go slow!
- Examples
 - Arabinogalactan, beta-glucan, inulin, and oligofructose
 - Partially-hydrolyzed guar gum
 - Suppresses methane production
 - Not a FODMAP
 - SupraFiber
 - Blends of fruits, whole food fiber

4R/5R Framework

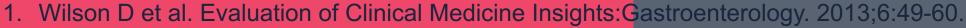
Repair

Reduce GI Inflammation

Nutrients for GI Tract cells

Improve tight junctions

Improve Immune Signaling


Supplements

- To restore the gut barrier
 - L-glutamine: glutamine is an important nutritional substance for healthy intestinal cells, particularly in the gut, and it's essential in maintaining proper intestinal barrier function.
 - 2-4 grams per day intestinal healing
 - 10-40 grams per day critically ill
 - MSM and quercetin: these anti-inflammatory substances can reduce chronic inflammation, which is a major cause of leaky gut.
 - N-acetyl glucosamine: N-acetyl glucosamine helps support proper health of the gut mucosa and reduces intestinal permeability.
 - Mucin: mucin is a particular kind of protein (glycoprotein) that is normally produced by the intestinal cells. It protects the intestinal lining and reduces inflammation.

Supplements

- DGL, aloe vera leaf gel, slippery elm, marshmallow, chamomile, and cat's claw: these botanicals produce a soothing, gel-like substance that coats the digestive tract, which can help heal ulcers and inflamed tissue.
- Zinc Carnosine: essential mineral widely recognized for it's role in gut and immune health. Shown to strength GI barrier supporting tight junctions.
- Serum-Derived Bovine Immunoglobulin (Medical Food)
 - Improves inflammatory balance, gut barrier function and immune cell counts in duodenal GALT Immune response.
 - Can significantly improve diarrhea

2. Asmuth DM, et al. Aids. 2013;27:2207-17.

Extra R..in 5 R Framework

Acupuncture

Biofeedback

Hypnotherapy

Mindfulness

Yoga

Rebalance

Examples of Diagnostic Testing Options

- Genova
 - NutraEval
 - GI Effects
- Diagnostics Solutions Laboratory
 - Gl Map
- Doctor's Data
 - GI 360
- ZRT labs
- SpectraCell

Patient Case 1

Case 1

- KT is a 27 y/o female
- Treated for SIBO over the last 9 months with 2 rounds of rifaximin and 1 round of ciprofloxacin
- Symptoms are GERD, bloating, abdominal pain, diarrhea, anxiety, painful periods (3 days with debilitating cramps), frequent colds, rosacea

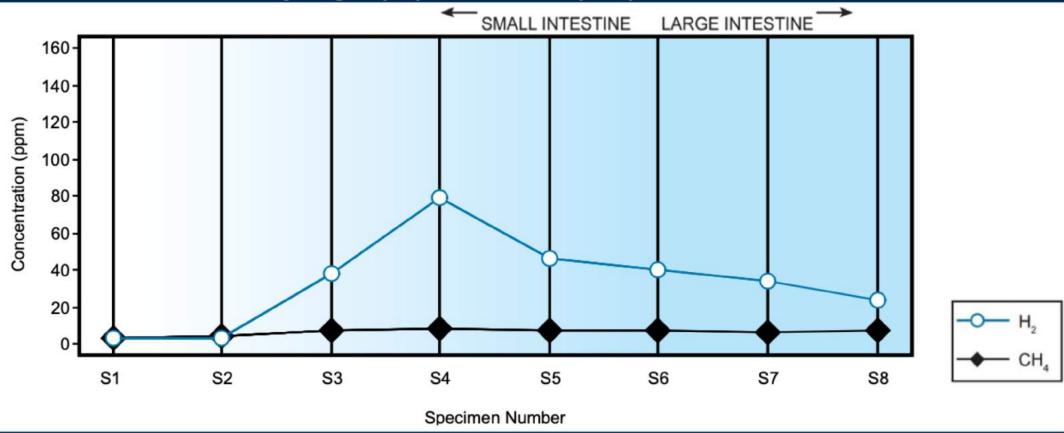
- Medications:
 - Omeprazole 20 mg twice daily
 - Multivitamin

What potential Medication related nutrient depletions are present for KT?

Type your answer in the chat box.

Case 1

- Labs:
 - Ferritin 6 ng/ml (15-150)
 - TSAT 10% (15-55)
 - Vitamin B12 459 (232-1245)
 - B6 7.4 ug/L (2-32.8)
 - Hgb/Hct 10.4/32.6
 - MCV 74 (79-97)
 - CMP, Folate WNL


- Zinc 80 ug/dl (56-134)
- Copper 125 ug/dl (72-166)
- TSH 2.2
- Negative TPO and Thyroglobulin antibodies
- Vitamin D 23.8 ng/ml
- EGD shows esophagitis.

2337 Small Intestinal Bacterial Overgrowth (SIBO) 3 Hour - Breath

Methodology: GC-TDC/SSS

Hydrogen (H₂) and Methane (CH₄) Breath Gases

	Hydro	gen (H ₂), M	ethane (CH ₄) and Carbo	n Dioxide (C	O ₂) (ppm)		
	Baseline 0 min (S1)	20 min (S2)	40 min (S3)	60 min (S4)	90 min (S5)	120 min (S6)	150 min (S7)	180 min (S8
H₂	3	3	37	78	46	40	33	23
CH₄	3	4	7	8	7	7	6	7
H₂ + CH₄	6	7	44	86	53	47	39	30
CO ₂ **	1	/	1	/	1	1	1	/
			Actual C	ollection Tim	nes			
Actual Time	7:41	8:02	8:21	8:41	9:11	9:42	10:11	10:42
Actual Interval	0 min	21 min	40 min	60 min	90 min	121 min	150 min	181 min

© Genova Diagnostics · A. L. Peace-Brewer, PhD, D(ABMLI), Lab Director · CLIA Lic. #34D0655571 · Medicare Lic. #34-8475

Evalua	ation for Hydro	gen (H	₂)
Hydrogen ind	crease over baseline	e by 90 m	ninutes
	Result		Expected Value
Change in H₂	75	Пн	<20 ppm

Eval	uation for Methan	e (CH₄)
Pea	ak methane level at any	point
	Result	Expected Value
CH₄ Peak	8	<10 ppm
A peak methane level a methane-positive resul	≥ 10 ppm at any point is ind t.	dicative of a

	,,	,, ····-
Pathogens		
Bacterial Pathogens	Result	Normal
Campylobacter	<dl< td=""><td><1.00e3</td></dl<>	<1.00e3
C. difficile, Toxin A	<dl< td=""><td><1.00e3</td></dl<>	<1.00e3
C. difficile, Toxin B	<dl< td=""><td><1.00e3</td></dl<>	<1.00e3
Enterohemorrhagic E. coli	<dl< td=""><td><1.00e3</td></dl<>	<1.00e3
E. coli O157	<dl< td=""><td><1.00e3</td></dl<>	<1.00e3
Enteroinvasive E. coli/Shigella	<dl< td=""><td><1.00e2</td></dl<>	<1.00e2
Enterotoxigenic E. coli LT/ST	<dl< td=""><td><1.00e3</td></dl<>	<1.00e3
Shiga-like Toxin E. coli stx1	<dl< td=""><td><1.00e3</td></dl<>	<1.00e3
Shiga-like Toxin E. coli stx2	<dl< td=""><td><1.00e3</td></dl<>	<1.00e3
Salmonella	<dl< td=""><td><1.00e4</td></dl<>	<1.00e4
Vibrio cholerae	<dl< td=""><td><1.00e5</td></dl<>	<1.00e5
Yersinia enterocolitica	<dl< td=""><td><1.00e5</td></dl<>	<1.00e5
Parasitic Pathogens	Result	Normal
Cryptosporidium	<dl< td=""><td><1.00e6</td></dl<>	<1.00e6
Entamoeba histolytica	<dl< td=""><td><1.00e4</td></dl<>	<1.00e4
Giardia	<dl< td=""><td><5.00e3</td></dl<>	<5.00e3
Viral Pathogens	Result	Normal
Adenovirus 40/41	<dl< td=""><td><1.00e10</td></dl<>	<1.00e10
Norovirus GI/II	<dl< td=""><td><1.00e7</td></dl<>	<1.00e7

Patient: Mary Lamme	Accession: 20191212-0	153
H. pylori		
	Result	Normal
Helicobacter pylori	<dl< td=""><td><1.0e3</td></dl<>	<1.0e3
Virulence Factor, babA	N/A	Negative
Virulence Factor, cagA	N/A	Negative
Virulence Factor, dupA	N/A	Negative
Virulence Factor, iceA	N/A	Negative
Virulence Factor, oipA	N/A	Negative
Virulence Factor, vacA	N/A	Negative
Virulence Factor, virB	N/A	Negative
Virulence Factor, virD	N/A	Negative
Normal Bacterial Flora		
	Result	Normal
Bacteroides fragilis	8.26e10	1.60e9 - 2.50e11
Bifidobacterium spp.	1.56e10	>6.70e7
Enterococcus spp.	4.81e5	1.9e5 - 2.00e8
Escherichia spp.	1.51e8	3.70e6 - 3.80e9
Lactobacillus spp.	4.42e6	8.6e5 - 6.20e8
Clostridia (class)	8.02e6	5.00e6 - 5.00e7
Enterobacter spp.	2.83e7	1.00e6 - 5.00e7
Akkermansia muciniphila	<dl< td=""><td>1.00e1 - 5.00e4</td></dl<>	1.00e1 - 5.00e4
Faecalibacterium prausnitzii	1.12e3	1.00e3 - 5.00e8
Phyla Microbiota	Result	Normal
Bacteroidetes	1.46e12	8.61e11 - 3.31e12
Firmicutes	2.09e11	5.70e10 - 3.04e11
Firmicutes:Bacteroidetes Ratio	0.14	<1.00

Opportunistic Bacteria			
Additional Dysbiotic/Overgrowth Bacteria	Result		Normal
Bacillus spp.	1.52e6	High	<1.50e5
Enterococcus faecalis	3.60e2		<1.00e4
Enterococcus faecium	5.68e2		<1.00e4
Morganella spp.	9.88e3	High	<1.00e3
Pseudomonas spp.	<dl< td=""><td></td><td><1.00e4</td></dl<>		<1.00e4
Pseudomonas aeruginosa	<dl< td=""><td></td><td><5.00e2</td></dl<>		<5.00e2
Staphylococcus spp.	<dl< td=""><td></td><td><1.00e4</td></dl<>		<1.00e4
Staphylococcus aureus	1.10e3	High	<5.00e2
Streptococcus spp.	4.79e3	High	<1.00e3
Methanobacteriaceae (family)	3.41e8		<5.00e9
Potential Autoimmune Triggers	Result	<u>.</u>	Normal
Citrobacter spp.	<dl< td=""><td></td><td><5.00e6</td></dl<>		<5.00e6
Citrobacter freundii	<dl< td=""><td></td><td><5.00e5</td></dl<>		<5.00e5
Klebsiella spp.	<dl< td=""><td></td><td><5.00e3</td></dl<>		<5.00e3
Klebsiella pneumoniae	<dl< td=""><td></td><td><5.00e4</td></dl<>		<5.00e4
M. avium subsp. paratuberculosis	<dl< td=""><td></td><td><5.00e3</td></dl<>		<5.00e3
Prevotella spp.	8.57e6		<1.00e8
Proteus spp.	<dl< td=""><td></td><td><5.00e4</td></dl<>		<5.00e4
Proteus mirabilis	<dl< td=""><td></td><td><1.00e3</td></dl<>		<1.00e3
Fusobacterium spp.	9.78e5		<1.00e8

Fungi/Yeast		
		Result
Candida spp.		<dl< td=""></dl<>
Candida albicans		<dl< td=""></dl<>
Geotrichum spp.		<dl< td=""></dl<>
Microsporidium spp.		<dl< td=""></dl<>
Rodotorula spp.		<dl< td=""></dl<>
Viruses		
		Result
Cytomegalovirus		<dl< td=""></dl<>
Epstein Barr Virus		<dl< td=""></dl<>
	Normal	
	<2.00e3	
	<1.00e5	
	<5.00e4	
	<1.00e5	
	<1.00e4	
	<5.00e6	
	<1.00e2	
	Normal	
	Not Detected	
	Not Detected	

Not Detected

Not Detected

Not Detected

Result

<dl

<dl

<dl

<dl

<dl

<dl

<dl

Result

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Parasites Protozoa

Blastocystis hominis

Chilomastix mesnili

Dientamoeba fragilis

Pentatrichomonas hominis

Ancylostoma duodenale

Ascaris lumbricoides

Necator americanus

Trichuris trichiura

Taenia spp.

Cyclospora spp.

Endolimax nana

Entamoeba coli

Worms

Normal <5.00e3 <5.00e2 <3.00e2

<5.00e3

Normal <1.00e5 <1.00e7

Intestinal Health			
Digestion	Result		Normal
Steatocrit	<dl< td=""><td></td><td><15 %</td></dl<>		<15 %
Elastase-1	444		>200 ug/g
GI Markers	Result		Normal
b-Glucuronidase	658		<2486 U/mL
Occult Blood - FIT	1		<10 ug/g
Immune Response	Result	0.19	Normal
Secretory IgA	2180	High	510 - 2010 ug/g
Anti-gliadin IgA	130		0 - 157 U/L
Inflammation	Result	395	Normal
Calprotectin	11		<173 ug/g

Type your plan in the chat box!

Gut healing plan?

Nutrient
Repletion
& Immune
Support?

Other Testing?

Case #2

- JD is a 35 y/o female presenting to the functional medicine consult with joint pain, fatigue, muscle aches, brain fog, bloating, abdominal pain, and anxiety.
- Hx of Hashimotos, EBV (past infection)
- Strenuous exercise, menstrual cycles, and stress make her symptoms worse.
- Sensitive to artificial fragrances,
- Hx of breast implants- had them removed 6 months ago
- Current medications: Armour Thyroid 120mg once daily

Case #2 Labs

- TSH 1.86 uIU/ml (0.45-4.500)
- Thyroxine (T4) 7.2 ug/dl (4.5-12)
- T3 update 26% (24-39)
- Triiodothyronine (T3) 87 ng/dl (71-180)
- Vitamin D 25-OH 60.2 ng/ml)30-100
- ANA negative
- TPO Positive, 145 IU/ml (0-34)
- CRP 6 mg/L (0-10)
- Sed Rate 14 mm/hr (0-32)

What should be in our work-up?

Hormones?

Nutrients?

Type your plan in the chat box!

Detoxification?

Salivary Hormone Results

Estradiol ♦ pmol/L 6.8

	Reference Range
Follicular	2.8-8.8 pmol/L
Peak *	4.5-19.1 pmol/L
Luteal	2.8-8.2 pmol/L
Menopausal	3.7-9.4 pmol/L
Male	3.1-7.4 pmol/L
* Peak = Days 11 and 12	

Testosterone ◆ pmol/L <30

	Reference Range
Premenopausal	34-148 pmol/L
Menopausal	34-148 pmol/L
Male	110-513 pmol/L

Estrone pmol/L 64.4

	Reference Range
Menopausal	31.9-183.4 pmol/L

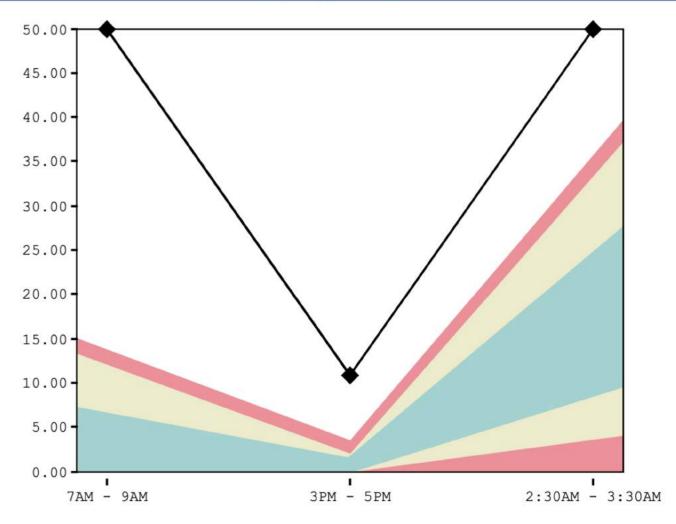
Progesterone ♦ pmol/L

606

	Reference Range
Follicular	17-321 pmol/L
Peak *	151-829 pmol/L
Luteal	33-452 pmol/L
Menopausal	45-370 pmol/L
Male	31-280 pmol/L
* Peak = Days 18 and 20	-

Estriol pmol/L <70

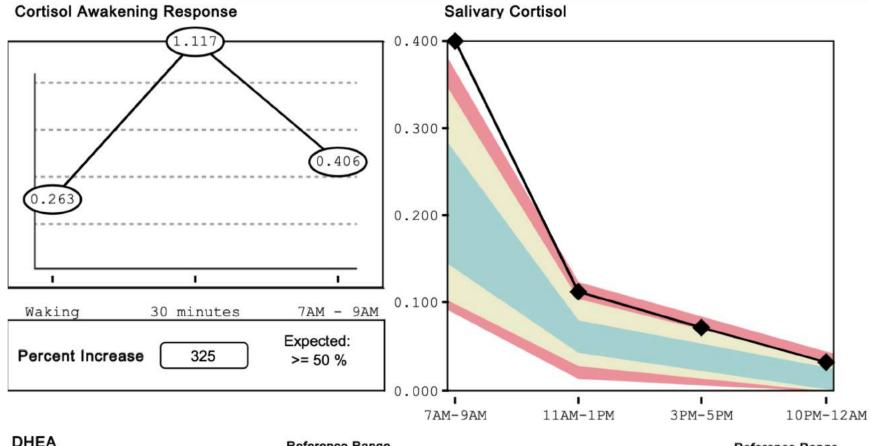
	Reference Range
Menopausal	<= 133 pmol/L


P/E2 Ratio

89

	Reference Range	
Follicular	10-85	
Luteal	8-80	
Menopausal	12-62	

Salivary Melatonin



Results

Nesuits	7AM-9AM*	3PM-5PM*	2:30AM - 3:30AM*
Patient Results (pg/mL) >>	>50.00	10.76	>50.00
Reference Range (pg/mL) *Based on Collection Times	<=12.12	<=1.97	3.71-33.38

Salivary Cortisol, Cortisol Awakening Response, and DHEA

Results

	Waking	30 Minutes	7AM-9AM*	11AM-1PM*	3PM-5PM*	10PM-12AM*
Patient Result (mcg/dL) >>	0.263	1.117	0.406	0.113	0.071	0.031
Reference Range (mcg/dL) *Based on Collection Times	N/A	N/A	0.097-0.337	0.027-0.106	0.013-0.068	<=0.034
Actual Collection Time	6:32AM	7:02AM	8:05AM	12:05PM	4:10PM	10:16PM

NutrEval Results Overview Supplementation Normal Borderline High Need Antioxidants for High Need Vitamin A / Carotenoids Vitamin C Vitamin E / Tocopherols α-Lipoic Acid α-Lipoic Acid - Dose = 200 mg CoQ10 **B-Vitamins** Thiamin - B1 Riboflavin - B2 Riboflavin - B2 - Dose = 50 mg Niacin - B3 Niacin - B3 - Dose = 50 mg Pyridoxine - B6 Biotin - B7 Folic Acid - B9 Cobalamin - B12 Minerals Magnesium Manganese Molybdenum Zinc

Malabsorption and Dysbiosis Markers

Malabsorption Markers

Reference Range

Indoleacetic Acid (IAA)

Phenylacetic Acid (PAA)

0.22 <= 0.12

Bacterial Dysbiosis Markers

Dihydroxyphenylpropionic Acid (DHPPA)	2.9	<= 5.3
3-Hydroxyphenylacetic Acid <dl< td=""><td></td><td><= 8.1</td></dl<>		<= 8.1
4-Hydroxyphenylacetic Acid	28	<= 29
Benzoic Acid		0.14 <= 0.05
Hippuric Acid	165	<= 603

Yeast / Fungal Dysbiosis Markers

Arabinose	115	<= 96
Citramalic Acid	7.2	<= 5.8
Tartaric Acid		<= 15

Creatinine Concentration

Reference Range

Creatinine •	4.5	3.1-19.5 mmol/L
		TO THE PARTY OF TH

Cellular Energy & Mitochondrial Metabolites

Carbohydrate Metabolism		Reference Range	
Lactic Acid	3.7	1.9-19.8	
Pyruvic Acid	6	7-32	
β-OH-Butyric Acid (BHBA)	(2.3 <= 2.8	

Energy Metabolism

Citric Acid		398		40-520
Cis-Aconitic Acid	12			10-36
Isocitric Acid		55		22-65
α-Ketoglutaric Acid (AKG)	(dl			4-52
Succinic Acid			9.1	0.4-4.6
Malic Acid			5.1	<= 3.0
β-OH-β-Methylglutaric Acid (HMG)	4			<= 15

Fatty Acid Metabolism

Adipic Acid	4.4 <= 2.8
Suberic Acid	2.3 <= 2.1

Neurotransmitter Metabolites			
Reference Range			
Vanilmandelic Acid	1.3	0.4-3.6	
Homovanillic Acid	6.3	1.2-5.3	
5-OH-indoleacetic Acid	10.8	3.8-12.1	
3-Methyl-4-OH-phenylglycol	0.04	0.02-0.22	
Kynurenic Acid	7.6	<= 7.1	
Quinolinic Acid	3.0	<= 9.1	
Kynurenic / Quinolinic Ratio	(2	2.53 >= 0.44	

Toxin & Detoxification Markers			
	Reference Rang		
α-Ketophenylacetic Acid (from Styrene)	0.11	<= 0.46	
α-Hydroxyisobutyric Acid (from MTBE)	6.8	<= 6.7	
Orotic Acid	0.61	0.33-1.01	
Pyroglutamic Acid	43	16-34	

Tyrosine	Metabolism	
	Refer	ence Range
Homogentisic Acid	45	<= 19
2-Hydroxyphenylacetic Acid	0.72	<= 0.76

Vita	amin Markers		
	F	Refe	rence Range
α-Ketoadipic Acid	0.4		<= 1.7
α-Ketoisovaleric Acid	0.33		<= 0.97
α-Ketoisocaproic Acid	0.30		<= 0.89
α-Keto-β-Methylvaleric Acid	1.2		<= 2.1
Formiminoglutamic Acid (FIGIu)	0.4		<= 1.5
Glutaric Acid		4.7	<= 0.51
Isovalerylglycine		4.8	<= 3.7
Methylmalonic Acid	1.5		<= 1.9
Xanthurenic Acid	0.24		<= 0.96
3-Hydroxypropionic Acid	7		5-22
3-Hydroxyisovaleric Acid	6		<= 29

Omega 3 Fatty Acids		
Analyte	(cold water fish, flax, walnut)	Reference Range
α-Linolenic (ALA) 18:3 n3	<dl>dl</dl>	>= 0.09 wt %
Eicosapentaenoic (EPA) 20:5 n3	0.35	>= 0.16 wt %
Docosapentaenoic (DPA) 22:5 n3	1.35	>= 1.14 wt %
Docosahexaenoic (DHA) 22:6 n3	2.9	>= 2.1 wt %
% Omega 3s	4.6	>= 3.8

Omega 9 Fatty Acids Analyte (olive oil) Reference Range			
			je
Oleic 18:1 n9		13 10-13 wt %	
Nervonic 24:1 n9		4.3 2.1-3.5 wt %	ě
% Omega 9s	(17.4 13.3-16.6	

Satu	rated Fatty Acid	s
Analyte (me	at, dairy, coconuts, palm oils)	teference Range
Palmitic c16:0	20	18-23 wt %
Stearic C18:0	18	14-17 wt %
Arachidic c20:0	0.23	0.22-0.35 wt %
Behenic c22:0	0.84	0.92-1.68 wt %
Tricosanoic	0.15	0.12-0.18 wt %
Lignoceric C24:0	2.5	2.1-3.8 wt %
Pentadecanoic	0.05	0.07-0.15 wt %
Margaric C17:0	0.27	0.22-0.37 wt %
% Saturated Fats	41.5	39.8-43.6

Delta - 6 Des	aturas	e Activity	
Upregulated	Functional	Impaired	
Linoleic / DGLA 18:2 n6 / 20:3 n6	8.9	6.0	-12.3

Cardiovascular Risk		
Analyte	Refer	ence Range
Omega 6s / Omega 3s	7.6	3.4-10.7
AA / EPA 20:4 n6 / 20:5 n3	47	12-125
Omega 3 Index	3.3	>= 4.0

Omega 6 Fatty Acids			
Analyte (vegetable oil, gra	ains, most meats, dairy)	Reference Range	
Linoleic (LA) 18:2 n6	14.4	10.5-16.9 wt %	
y-Linolenic (GLA) 18:3 n6	0.07	0.03-0.13 wt %	
Dihomo-y-linolenic (DGLA) 20:3 n6	1.61	>= 1.19 wt %	
Arachidonic (AA) 20:4 n6	16	15-21 wt %	
Docosatetraenoic (DTA) 22:4 n6	2.24	1.50-4.20 wt %	
Eicosadienoic 20:2 n6		0.39 <= 0.26 wt %	
% Omega 6s	35.1	30.5-39.7	

Mond	ounsaturated	Fats
Omega 7 Fats		Reference Range
Palmitoleic	0.17	<= 0.64 wt %
Vaccenic 18:1 n7	1.02	<= 1.13 wt %
Trans Fat		
Elaidic 18:1 n9t	0.23	<= 0.59 wt %

Oxidative Stress Markers

Reference Range

Methodology: Colorimetric, thiobarbituric acid reactive substances (TBARS), Alkaline Picrate, Hexokinase/G-6-PDH, LC/MS/MS, HPLC

Glutathione (whole blood)	796	>=669 micromol/L
Lipid Peroxides (urine)	9.0	<=10.0 micromol/g Creat.
8-OHdG (urine)		<=15 mcg/g Creat.
Coenzyme Q10, Ubiquinone (serum)	0.72	0.43-1.49 mcg/mL

Toxic Elements* Element Reference Range Reference Range 1.02 <= 2.81 mcg/dL Lead 3.65 <= 4.35 mcg/L Mercury <DL <= 13.7 mcg/L Arsenic 0.23 Cadmium <= 1.22 mcg/L 0.38 <= 0.39 mcg/L Tin

Nutrient Elements		
Element	Reference Range	Reference Range
Copper (plasma)	134.1	75.3-192.0 mcg/dL
Magnesium (RBC)	42.4	30.1-56.5 mcg/g
Manganese (whole blood)	10.2	3.0-16.5 mcg/L
Potassium (RBC)	2,366	2,220-3,626 mcg/g
Selenium (whole blood)	225	109-330 mcg/L
Zinc (plasma)	95.4	64.3-159.4 mcg/dL

^{*} All toxic Elements are measured in whole blood. Methodology: ICP-MS

Nutrient
Repletion
& Immune
Support?

Type your plan in the chat box!

Gut healing plan?

Other Testing?

Take-Aways

- 1. Dysbiosis and Chronic infections in the gut can lead to impairment of the immune system.
- 2. A systems-based approach to care, can work to restore immune function.

