

Gastrointestinal Dysbiosis and Inflammatory Conditions

David Quig, PhD

Disclosure

• David Quig is employed by Doctor's Data, Inc.

The central role of the gastrointestinal (GI) microbiota in local, and systemic low-level inflammation

- Recognize the complexity of the intestinal barrier system, and develop plans to support it
- Describe the mutual relationships between the microbiota and the mucosa with respect to local, and chronic low-level systemic inflammation
- Interpret laboratory results for stool biomarkers of GI inflammation, and identify a non-organic inflammatory dysbiosis

Network of mutual interactions among and between organisms and their barrier system

Intestinal Barrier

- Multilayered and highly integrated system
- Primary functions
 - H₂O/electrolyte balance, **prevent** entry of pathogens/toxins, food-derived antigens, and environmentally-derived toxicants
 - Regulate *appropriate* inflammatory/immune responses
- "<u>Two way street</u>"- mutual regulation
 - Commensal bacteria facilitate optimal status of barrier components.
 - Barrier components provide surveillance, protection and selection of commensal bacteria.

Multifaceted Intestinal Barrier System

• Intestinal microbiota – high abundance key players

communications command center

• <u>"Biochemical" barrier</u>

Digestive secretions, sIgA, antimicrobial peptides/proteins (lysozyme, defensins), reactive oxygen species, cytokines

<u>Structural/physical barriers</u>

Mucus *gradient* Glycocalyx- membrane tethered mucins Epithelial lining, tight junction proteins Lamina propria

> Clin Nutr(2015)<u>34</u>:1080-7 BMC Gastroenterol (2014)<u>14</u>:189-213 J Clin Endocrinol (2012)<u>46</u>:512-17 Neurogastroenterol Motil (2012)<u>24</u>:503-12

slgA, Barrier Function and the Microbiota

- <u>slgA protective functions</u>- "housed" in mucus
 - Immune exclusion of microbes (including viruses) and toxins
 - Binding to pathogens decreases ATP production → loss of motility and biofilm production
 - Antiparasitic augmentation via activation of eosinophils
 - Regulates the composition of the microbiota
 - Anti-inflammatory neutralizes LPS in apical recycling endosomes
- Sustained elevations common up to 4-6 weeks after a GI virus
- Want higher sIgA with pathogenic microbes
- Chronic Candidiasis is often associated with low <u>s</u>IgA despite normal serum IgA levels (sIgA specific protease activity)

Front Immunol(2013)<u>4</u>:1-11 Cell Host(2007)<u>2</u>:28-39 JBC(2011)<u>286</u>:17239-47 Infect Immunol(2013)<u>81</u>:653-64 Gig Sanit(2012)<u>3</u>:27-29

Intervention for Low slgA

- Ω -3 fatty acids, olive oil, A, D and Zn
- Probiotics
 - Lactobacillus rhamnosus GG* and Bifidobacterium lactis Bb-12 (↑ number of slgA secreting cells in formula-fed infants)
 - *S. boulardii-* ~75% ↑ *sIgA* (germ-free mouse model)
- <u>Prebiotics</u> Soluble fiber
- Glutamine (dosing concerns)
- Elevated cortisol and low DHEA decrease slgA (chronic stress)

Clin Nutr(2015)<u>34</u>:1080-7 Amino Acids(2015)47:2143-54 J Steroid Biochem Mol Biol(2015)<u>148</u>:179-83 Eur J Nutr(2013)<u>52</u>:1089-98 Am J Surg(2010)<u>199</u>:35-42

Mucosal Specialists- Sense, Report, Secrete

Finely tuned network of immune mechanisms for microbial recognition; selection and eradication

BMC Gastroenterol (2014)<u>14</u>:189 http://www.bomedcentral.com/1471-230X/14/189

Microbial-host Crosstalk

- Fermentation of soluble fiber and endogenous mucins to short chain fatty acids by commensal bacteria
- Fuel for enterocytes, maintenance of barrier functions, and glycemic regulation
- Body "listens" to butyrate
 - G-protein-coupled receptors (immune and epithelial cells)
 - Butyrate mediates the release of anti-inflammatory cytokines, gut-derived peptides and antimicrobial peptides
- Faecalibaterium prausnitzii, Lachnospiraceae, and some Clostridium spp. are major butyrate producers
- Butyrate producers are more abundant with regular intake of chick peas, inulinlike fructans, and partially hydrolyzed guar gum (galactomannan).

Clostridia Phobia is Misguided

- Clostridium spp. are normally ≈ 5 % of total microbiota and provide continuous cross-talk with the mucosa.
- Commensal Clostridium spp. are key butyrate producers
- Low abundance of Clostridium spp. occurs with IBD and colorectal cancer
- Colonization in *breastfed infants* during the 1st month of life

(*C.blautia, C. collinsella, and C. veillonella*) Vertical transfer; Maternal gut \rightarrow lymph \rightarrow breast milk \rightarrow infant's gut

12

Gut Pathog(2013)<u>5</u>:23 AJCN(2013)<u>97</u>:1044-52 J Nat Cancer Inst(2013)<u>105</u>:1907-11 PLOS ONE(2015)doi:10.1371/journal.pone.0124599 Pediatric Res(2015)77:220-28

Microbiota-normoglycemia Connection

Breakdown of Microbial-Host Crosstalk

The LPS Breach

- Lipopolysaccharides (LPS)- essential for all gram-negative bacteria (70% of GI bacteria)
- Metabolic syndrome- sterile LPS elevation to about 0.5-2.0 times > normal (10-50 times lower than during septicemia)
- Assimilation of LPS from the gut <u>Normal</u>- *transient* post-prandial ↑ with high fat meals (*chylomicrons*)
 - Abnormal- breach of the endothelial barrier (serum Zonulin, L: M)
- The set up for metabolic endotoxemia:

Inflammatory Dysbiosis and paracellular permeability

J Endocrinol Metab (2015)<u>100</u>:3427-35 Diabetes Care (2012)<u>35</u>:375–382 Metab(2017)<u>69</u>:43-50 J Nutr(2016)<u>146</u>:1694-700 Eur J Nutr (2017)<u>57</u>:2985-97

What Tells Us Directly About Intestinal Inflammation?

Reference Range Within Outside Lactoferrin 23.6 < 7.3 μg/mL Calprotectin* 92 10 - 50 μg/g <= 600 ng/mL Lysozyme* 1400 White Blood Cells None - Rare None Neg Mucus Neg

Inflammation

Specific Biomarkers of Intestinal Inflammation

- Provide *noninvasive* assessment of active inflammatory responses
- Neutrophil-derived proteins measured by immunoassays
- Specific proteins may be elevated in stool in association with: Inflammatory bowel diseases (Lactoferrin and/or Calprotectin, and Lysozyme)
 - Intestinal infections (viral, bacterial or parasitic)
 - NSAID abuse
 - Colorectal cancer
 - Possibly Celiac disease (very poor clinical specificity)

Gastroenterol(2011)140:1817-26 Dis Rectum Colon(2007)50:1697-1706

17

Gastrointestinal Inflammation

World J Gastroenterol(2008)<u>14</u>:5584-89 Acta Gastroenterol Belg(2013)<u>76</u>:322-8 Clinica Chimica Acta(2012) doi: 10.1016/j.cca.2012.11.008

What if Lactoferrin and / or Calprotectin are High?

• If marginal and pathogens detected-

Consider retesting about 1 month after eradication of pathogen(s)

- If high Lactoferrin (LF) and/or Calprotectin (CP)-Repeat with the same laboratory (stand alone tests) Endoscopy recommended if 2 elevated results 4-6 weeks apart
- Utilize to monitor the efficacy of anti-inflammatory therapy

Clin Chim Acta(2012) doi: 10.1016/j.cca.201 Inflamm Bowel Dis(2008)14:40-6 Clin Chim Acta(2007)381:63-8 Am J Gastroenterol(2008)103:162-9

Fecal LF Levels Elevated During Remission

<u>Group</u>	<u># observations</u>	<u>µg/ml (X±SE)</u>	
Controls	55	2.8 (0.4)	
IBS	31	1.3 (0.3)	
Inactive UC	41	67 (24)	
Active UC	31	815 (389)	
Inactive CD	26	239 (83)	
Active CD	51	672 (242)	

Am J Gastroenterol(2003)<u>98</u>:1309-14

Textbook Flaming IBD

13 yof, inability to gain weight, multiple loose BMs/day, abdominal pain Culture *only* indicated 4+ *Proteus mirabilis*

Post-colonoscopy diagnosis of Ulcerative colitis leading to complete proctocolectomy

Dysbiosis or IBD? You make the Call

41 y.o.m., chronic diarrhea, wt. loss for 1.5 years

GI Inflammation

Classic Pathogen-induced Inflammation

BACTERIOLOGY CULTURE				
Expected/Beneficial flora	Commensal (Imbalanced) flora	Dysbiotic flora		
2+ Bacteroides fragilis group	2+ Citrobacter freundii complex	3+ Providencia alcalifaciens		
NG Bifidobacterium spp.	1+ Enterobacter cloacae complex			
3+ Escherichia coli	2+ Gamma hemolytic strep			
2+ Lactobacillus spp.	1+ Klebsiella pneumoniae ssp pneumoniae			
2+ Enterococcus spp.	2+ Kluyvera ascorbata			

Viruses	Within	Outside	Reference Interval
Adenovirus F40/41	Negative		Negative
Astrovirus	Negative		Negative
Norovirus GI/GII		Positive	Negative
Rotavirus A	Negative		Negative
Sapovirus (I, II, IV and V)	Negative		Negative
Parasites			
Cryptosporidium		Positive	Negative
Cyclospora cayetanensis	Negative		Negative
Entamoeba histolytica	Negative		Negative
Giardia duodenalis (AKA intestinalis & lamblia)		Positive	Negative
Diarrheagenic E. coli/Shigella			
Enteroaggregative E. coli (EAEC)	Negative		Negative
Enteropathogenic <i>E. coli</i> (EPEC)	Negative		Negative
Enterotoxigenic E. coli (ETEC) It/st		Positive	Negative
Shiga-like toxin-producing <i>E. coli</i> (STEC) <i>stx1/stx2</i>	Negative		Negative
E. coli O157	Negative		Negative
Shigella/Enteroinvasive E. coli (EIEC)		Positive	Negative
Pathogenic Bacteria			
Campylobacter (jejuni, coli and upsaliensis)		Positive	Negative
Clostridium difficile (Toxin A/B)	Negative		Negative
Plesiomonas shigelloides	Negative		Negative
Salmonella	Negative		Negative
Yersinia enterocolitica	Negative		Negative
Vibrio (parahaemolyticus, vulnificus and cholerae)	Negative		Negative
Vibrio cholerae	Negative		Negative

Eliminate the Pathogen(s)

Bacterial Susceptibilities: Providencia alcalifaciens

	nation	The second s		
	Low Sensitivity	High Sensitivity		
Berberine	•			
Black Walnut	•			
Caprylic Acid				
Oregano				
Uva Ursi				
Grapefruit Seed Extract				
Silver				

		PRESCRIPTIVE	AGENTS
	Resistant	Intermediate	Susceptible
Amoxicillin-Clavulanic Acid	R		
Ampicillin	R		
Cefazolin	R		
Ceftazidime			S
Ciprofloxacin			S
Trimeth-sulfa	R		

- Requires live microorganisms (bacteria, yeast)
- Provides guidance No biofilm
- Combo of natural agents- Dose/duration?
- Probiotics
- "Starve" specific microbes (Klebsiella, yeast)
- Consider concomitant anti-inflammatories
 e.g. curcumin, berberine
- Standard dosing guidelines for Rx agents

Inflammatory Dysbiosis and Permeability

- Dysbiosis- compromised microbiota abundance and diversity
- *Inflammatory* dysbiosis, and increased permeability associated with IBDs, obesity, diabetes, excessive gestational weight gain, and high-fat/keto diets

<u>High abundance</u> of proinflammatory LPS-rich Proteobacteria, Enterobacteriaceae, Shigella, Escherichia

Lower abundance of Faecalibacterium prausnitzii, Eubacterium rectale, Clostridium spp., Bifidobacterium spp., Lachnospiraceae and A.muciniphila (Amuc_1100)

• Associated with low saccharolytic fermentation and fecal butyrate (SCFAs) Compromised barrier integrity, permeability and metabolic disruption

J Obesity (2019) doi:10.1155/2019/4608315 Am J Physiol Gastrointest Liver Physiol (2017)312:G327-39 FUNCT Int J Endocrinol (2013)2013;674106 PLoS One (2012)7:e37160 Mol Cell Biochem (2014):388:203–10 MEDIC

PCR-based Dysbiosis Test

- Dysbiosis Test- differentiation of normobiotic subjects and dysbiotic patients
- Dysbiosis index scores compared across healthy subjects (n=297), IBS patients (n=236) and IBD patients (n=135)
- Dysbiosis score > 2 indicates deviation from the reference normobiotic profile

	Parameter	IBD	IBS	Healthy
	Dysbiotic	74%	73%	16%
	Normobiotic	26%	27%	84%
IBD = inf	lammatory Bowel Dise (scoped/biopsies)	ease		
IBS = Irri	table Bowel Syndrom	e (Rome III criteria)	

<u>Cohort</u>	<u>% Dysbiotic</u>
Healthy	16
IBS	73
IBS-D	76
IBS-C	73
IBS-M	67
IBS-U	72
IBS-A	70
IBD naive	70
CD	80
UC	64
IBD remission	80
CD	89
UC	75

Aliment Pharmacol Ther (2015) doi: 10.1111/apt.13236

IBD, Pathogen-induced, or Inflammatory Dysbiosis?

28

Inflammatory Dysbiosis- Cardiometabolic Syndrome

- 68 year old sedentary female with family history of CAD
- 5'5," 200 lbs., excessive visceral fat (BMI= 32.3)
- Typical SAD diet
- Fatigue, hypertension, shortness of breath
- T2DM- on insulin

Firmicutes, Very Low	ł
Proteobacteria, Very High	1
Bacilli Class, Very Low	ł
Escherichia spp., Very High	1
Clostridia Class, Very Low	÷
Eubacterium hallii, Very Low	♦
Faecalibacterium prausnitzii, Very Low	÷
Lachnospiraceae, Very Low	↓
Veillonella spp., Very Low	÷

Short Chain Fatty Acids [‡]	Result	Unit	L	WRI	н	Reference Interval
% Acetate	53	%				50-72
% Propionate	26	%			\land	11 – 25
% Butyrate	17	%				11 – 32
% Valerate	4.1	%		A		0.8-5.0
Butyrate	0.59	mg/mL				0.8-4.0
Total SCFA's	3.4	mg/mL				5.0 – 16.0

- GI inflammatory biomarkers- WNL
- Elevated hsCRP and leptin, and low adiponectin (high L:A ratio)

Take-Aways

- "Feed" the commensal bacteria so they can communicate with the mucosa, and support the barrier system ("terrain").
- Integrate *all* components of the patient's comprehensive stool analysis when interpreting **specific biomarkers** of GI inflammation.
- Identify and ameliorate **Inflammatory Dysbiosis** for patients with the non-organic inflammation associated with cardiometabolic syndrome.

